High-Speed Scalable Silicon-MoS2 P-N Heterojunction Photodetectors

نویسندگان

  • Veerendra Dhyani
  • Samaresh Das
چکیده

Two-dimensional molybdenum disulfide (MoS2) is a promising material for ultrasensitive photodetector owing to its favourable band gap and high absorption coefficient. However, their commercial applications are limited by the lack of high quality p-n junction and large wafer scale fabrication process. A high speed Si/MoS2 p-n heterojunction photodetector with simple and CMOS compatible approach has been reported here. The large area MoS2 thin film on silicon platform has been synthesized by sulfurization of RF-sputtered MoO3 films. The fabricated molecular layers of MoS2 on silicon offers high responsivity up to 8.75 A/W (at 580 nm and 3 V bias) with ultra-fast response of 10 μsec (rise time). Transient measurements of Si/MoS2 heterojunction under the modulated light reveal that the devices can function up to 50 kHz. The Si/MoS2 heterojunction is found to be sensitive to broadband wavelengths ranging from visible to near-infrared light with maximum detectivity up to ≈1.4 × 1012 Jones (2 V bias). Reproducible low dark current and high responsivity from over 20 devices in the same wafer has been measured. Additionally, the MoS2/Si photodetectors exhibit excellent stability in ambient atmosphere.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heterojunction Hybrid Devices from Vapor Phase Grown MoS2

We investigate a vertically-stacked hybrid photodiode consisting of a thin n-type molybdenum disulfide (MoS2) layer transferred onto p-type silicon. The fabrication is scalable as the MoS2 is grown by a controlled and tunable vapor phase sulfurization process. The obtained large-scale p-n heterojunction diodes exhibit notable photoconductivity which can be tuned by modifying the thickness of th...

متن کامل

Self-powered broadband, high-detectivity and ultrafast photodetectors based on Pd-MoS2/Si heterojunctions.

In this work, a self-powered photodetector device is fabricated through the integration of a palladium-doped molybdenum disulfide thin film on silicon (Pd-MoS2/Si). The substitution of host Mo atoms with Pd dopants in the MoS2 film is revealed by structural and chemical analysis techniques. Due to the incorporation of Pd atoms into the MoS2 films, the photovoltaic characteristics of the fabrica...

متن کامل

Light Generation and Harvesting in a van der Waals Heterostructure

Two-dimensional (2D) materials are a new type of materials under intense study because of their interesting physical properties and wide range of potential applications from nanoelectronics to sensing and photonics. Monolayers of semiconducting transition metal dichalcogenides MoS2 or WSe2 have been proposed as promising channel materials for field-effect transistors. Their high mechanical flex...

متن کامل

Ultrafast Exciton Dissociation and Long-Lived Charge Separation in a Photovoltaic Pentacene-MoS2 van der Waals Heterojunction.

van der Waals heterojunctions between two-dimensional (2D) layered materials and nanomaterials of different dimensions present unique opportunities for gate-tunable optoelectronic devices. Mixed-dimensional p-n heterojunction diodes, such as p-type pentacene (0D) and n-type monolayer MoS2 (2D), are especially interesting for photovoltaic applications where the absorption cross-section and charg...

متن کامل

Electroluminescence and Photocurrent Generation from Atomically Sharp WSe2/MoS2 Heterojunction p–n Diodes

The p-n diodes represent the most fundamental device building blocks for diverse optoelectronic functions, but are difficult to achieve in atomically thin transition metal dichalcogenides (TMDs) due to the challenges in selectively doping them into p- or n-type semiconductors. Here, we demonstrate that an atomically thin and sharp heterojunction p-n diode can be created by vertically stacking p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017